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In this work, we derive and test a new automatized strategy to construct repulsive potentials for the self-
consistent charge density functional tight-binding (SCC-DFTB) method. This approach allows one to explore
the parameter space in a systematic fashion in order to find optimal solutions. We find that due to the limited
flexibility of the SCC-DFTB electronic part, not all properties can be optimized simultaneously. For example,
the optimization of heats of formation is in conflict with the optimization of vibrational frequencies. Therefore,
a special parametrization for vibrational frequencies is derived. It is shown that the performance of SCC-
DFTB can be significantly improved using a more elaborate fitting strategy. A new fit for C and H is presented,
which results in an average error of 2.6 kcal/mol for heats of formations for a large set of hydrocarbons,
indicating that the performance of SCC-DFTB can be systematically improved also for other elements.

Introduction

There exist two main approaches for theoretical determination
of molecular properties. The first one is a collection of wave-
function-based methods that originate from the Hartree-Fock
theory. The second one is density functional theory (DFT). Both
of these approaches constitute a field of intensive research
activity aimed at improving the accuracy of the calculations
and enhancing the computational efficiency. As an effect of this
impressive development effort, various quantum chemical
techniques emerged that were developed for different purposes.
One of these techniques, derived as an approximation to DFT,
is the self-consistent charge density functional tight-binding
(SCC-DFTB) method. It was primarily developed in order to
apply an approximated version of DFT to very large molecular
systems, appearing in either physical or chemical considerations.
Today, molecular systems of about 100 atoms can be handled
by DFT on a standard desktop PC, while using SCC-DFTB,
roughly 1000 atoms can be treated. SCC-DFTB is an ap-
proximate quantum chemical method that was derived from DFT
by a second-order expansion of the total DFT energy with
respect to density fluctuations around a suitable reference
density.1 It describes explicitly only valence electrons in minimal
atomic basis sets; chemical cores are treated in an effective
manner via additive two-center potentials. In addition, some of
the approximations concerning the molecular matrix elements
allowed for tabulating all of the necessary Hamiltonian and
overlap matrix elements in so-called Slater-Koster parameter
files, which eliminated the otherwise very costly integrations.
The primary fields of potential applications of SCC-DFTB are
the physics of solids (including crystals, amorphous materials,
and semiconductors), the chemistry of biological molecules,
surface chemistry and catalysis, molecular dynamic studies on
a nanosecond time scale, and investigations of molecules with
hundreds or thousands of conformations. While being quanti-

tatively less accurate than the more sophisticated methods, SCC-
DFTB makes such computationally demanding investigations
possible, owing to its high efficiency.

Besides being an approximation to DFT, SCC-DFTB can be
viewed as an extension of a tight-binding method, which
includes charge self-consistency and is parametrized using DFT.
The energy in tight-binding (TB) methods is composed of two
parts, electronic and repulsive. The electronic part is described
by a Hamiltonian, which is usually represented in a minimal
basis of atom-centered basis functions. In DFTB, this Hamilton
matrix is derived from DFT, using as the reference density the
superposition of neutral atomic densities and a minimal basis
of atomic wave functions, which is explicitly calculated.2-4 The
repulsive energy, which consists of the DFT double counting
contributions and the core-core repulsion, can be approximated
as a sum of atomic pair repulsion functions. The relation of
DFT and TB methods has been discussed in detail by Foulkes
and Haydock.5 Standard tight-binding methods are usually based
on the Harris functional approach,6 that is, they diagonalize a
suitable Hamiltonian once and use this non-self-consistent
solution to derive further properties like forces, second deriva-
tives, and so forth. For organic and biological molecules,
however, an approximate inclusion of self-consistency has been
found to be crucial. This has been done by a second-order
expansion of the total DFT energy1 followed by further
approximations to derive a computationally efficient model.
However, to account accurately for some molecular properties
(e.g., proton affinities, hydrogen bonding), higher-order terms
have to be included in the formalism,7-9 and special care must
be taken for a proper treatment of Coulomb interactions.

SCC-DFTB is parametrized using a generalized gradient
approximation (GGA) functional. In the actual version, the
electronic parameters are calculated using the PBE functional.10

This means, however, that the well-known DFT-GGA deficien-
cies are inherited by SCC-DFTB. Of particular relevance is the
DFT-GGA tendency to overpolarize extended π-conjugate
systems,11 the problems of ionic and charge-transfer excited
states,12 and the missing dispersion interactions, which have been
included by augmenting SCC-DFTB using an empirical exten-
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sion.13 The performance and deficiencies of SCC-DFTB with
respect to biological applications have been reviewed recently,14,15

and methodological developments have been described in ref
16.

SCC-DFTB has been tested for various properties of small
organic molecules like heats of formations, geometries, vibra-
tional frequencies, dipole moments, and so forth in several recent
publications. It should be noted that all of these test sets contain
a large number of molecules representative of many chemical
bonding situations. However, good performance for small
molecules does not guarantee a good description of larger
molecules. Good examples are the structures and relative
energies of peptides, which pose significant problems for
semiempirical models like AM117 and PM318 but are well
described at the SCC-DFTB level19,20 or with more elaborate
NDDO methods like OM121 or OM2.22,23 In general, SCC-DFTB
is excellent in reproducing geometries. Also, reaction energies
are reproduced reasonably well on average,1,24 while heats of
formation are overestimated, owing to the overbinding tendency
of SCC-DFTB. Recently, the SCC-DFTB heats of formation
have been systematically tested. It turns out that reparametri-
zation of atomic contributions can improve the performance for
heats of formation significantly; however, the refined NDDO
methods like OM2 or PDDG-PM325 are still superior to SCC-
DFTB in this respect.26,27 The performance of SCC-DFTB for
vibrational frequencies,28-31 although reasonable on average, is
less satisfactory than that for geometries. However, also
vibrational frequencies could be improved significantly after
reparametrization.32

These studies showed that the SCC-DFTB performance for
distinct properties can be partially tweaked by more or less
elaborate fitting procedures. A question arises whether the DFTB
performance can be systematically improved for all of the
considered properties using better fitting strategies for the
repulsive potentials or whether there are optimization conflicts,
in which one property is improved at the cost of others. In
general, such a behavior is expected since the electronic part
constitutes an approximation to full DFT, and its limited
flexibility (minimal basis, charge self-consistency, fixed refer-
ence density, etc.) may lead to a limited transferability and
conflicts in parameter optimization. In this work, we aim to
explore this point in detail, using a new representation of
repulsive potentials and an improved fitting strategy. The
proposed methodology is applied to construct a set of repulsive
potentials for C and H, which are subsequently tested in a
systematic fashion using large sets of molecules.

Theory

The first subsection briefly introduces the SCC-DFTB method
in a degree necessary for understanding the derivation and
functioning of the algorithm for automatized construction of
the repulsive SCC-DFTB potentials Vrep. A thorough discussion
of the SCC-DFTB method was given elsewhere.1,2 The following
subsections describe the details of the proposed algorithm. Our
procedure uses as an input a set of molecular equilibrium
geometries together with the corresponding atomization energies.
Because both the energies and forces associated with the
employed molecular structures can be represented as linear
functions of repulsive potentials, a solution of an inverse
problem is capable, in principle, of yielding a set of Vrep that
reproduces the input quantities.

SCC-DFTB. The self-consistent charge density functional
tight-binding (SCC-DFTB) method1 is an approximation to
density functional theory (DFT). It originates from a second-
order Taylor expansion of the total DFT energy

with respect to density fluctuations around some reference
density F0, where F0 is usually chosen as a sum of neutral or
confined atomic densities FA

0. The last term in eq 1 describes
the contribution to energy due to the density fluctuation δF )
F - F0. We approximate the density fluctuation as a sum of
induced atomic charges, δF ) ∑A∆qA, where ∆qA ) qA - qA

0

and qA are computed as atomic Mulliken charges. The last term
in eq 1 can thus be rewritten as

where the distance-dependent function γAB can be interpreted
as a pure Coulomb interaction between the induced charges ∆qA

and ∆qB at long distances and a Hubbard-type correlation at
short distances. An explicit form of γAB can be found elsewhere.1,33

The energy contributions in the second line in eq 1 depend
on the neutral atomic densities and interatomic distances. As
usual in tight-binding theory, these terms are collected in a
repulsive energy Erep contribution.5 This term can be ap-
proximated as a sum of short-range pair potentials

The repulsive potentials are determined by an appropriate fitting
scheme, where a set of accurate energies and geometries, either
theoretical or experimental, is used. In the following subsections,
we propose a systematic and automatized method for construct-
ing such potentials.

The first term of eq 1 involves a summation over a set of
molecular Kohn-Sham orbitals ψi. The molecular orbitals
(MOs) are built as linear combinations (LC) of atomic valence
orbitals (AOs), ψi ) ∑ν cνiφν. Note that the SCC-DFTB method
employs only a minimal valence basis set for each atom. The
valence AOs are determined by solving a confined radial
pseudoatomic Kohn-Sham problem

where the explicit form of the kinetic T̂ and potential V̂ energy
operators depend on the choice of either a one-component
Schrödinger or a four-component Dirac equation. The additional
confining potential V̂conf is employed to compress the otherwise
very diffused tail of valence orbitals. Note that in traditional
quantum chemical calculations, very large basis sets are usually
employed that give enough variational freedom to reoptimize
the LC coefficients of valence AOs inside of a molecule or a
solid. In the SCC-DFTB model, the limitation introduced by
the choice of a minimal basis set forces us to mimic the presence
of other atoms already at the atomic level via the additional
confining potential. It is well-known that such a confinement
improves the bonding description in cases where the minimal

E[F] ) ∑
i

occ

〈ψi|Ĥ
0|ψi〉 -

1
2 ∫ ∫ F0F′0

|r - r'|
drdr' -

∫Vxc[F0]F0dr + Exc[F0] + Ecore +

1
2 ∫ ∫ [ 1

|r - r'|
+ (δ2Exc[F]

δFδF′ )
F)F0]δFδF′drdr' (1)

E2nd ) 1
2 ∑

AB

∆qA∆qBγAB (2)

Erep ) ∑
A>B

VAB
rep(rAB) (3)

[T̂ + V̂eff + V̂conf]φi(r) ) εiφi(r) (4)
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basis is used.34 At present, two explicit forms of the confining
potentials are used, harmonic1 and Woods-Saxon.4

In the atomic orbital basis, the overlap and Hamilton matrix
elements are expressed as

where A and B denote the atoms on which the atomic orbitals
φµ and φν are centered. Both overlap and Hamilton matrix
elements are calculated and tabulated for a dense mesh of
interatomic distances.

With the use of Mulliken charges, qA can be expressed as

Now, the generalized eigenvalue problem can be solved
iteratively for the charge self-consistent Hamiltonian

Thus, the final expression for the total SCC-DFTB energy reads

Analytical Representation of Repulsive Potentials. In the
actual version of SCC-DFTB, the repulsive potential VAB

rep

between atoms A and B is represented by cubic splines. Here,
we choose to represent the repulsive potentials as a collection
of fourth-order splines. This choice ensures that the first- and
second-order derivatives of the repulsive potentialssnecessary
for geometry optimization and for computing harmonic vibra-
tional frequenciesswill be given as sufficiently smooth functions
of interatomic distance. The previous choice of cubic splines
yielded piecewise linear functions for the second-order deriva-
tives that did not have enough flexibility to reproduce adequately
the repulsive portion of the Hessian. As we see below, where
the exact construction of our spline functions is given in more
detail, using fourth-order splines does not introduce any
additional complexity in comparison to the traditional third-
order approach.

The definition of the repulsive potential VAB
rep between atoms

A and B starts with dividing the range of possible atomic
separations [0,∞) into a set of intervals I0 ) [0, r1), I1 ) [r1, r2),
..., In ) [rn, rn+1), and In+1 ) [rn+1,∞) using a set of division
points r1, r2, ..., rn+1. Subsequently, for each of the intervals I1,
I2, ..., In, we define a fourth-order polynomial given by

where the five unknown parameters ak, i are to be determined.
The total number of unknowns is thus 5n. We require that Sn+1

as well as its first three derivatives are identically equal to zero
over the whole interval In+1. Therefore, the last division point,
rn+1, can be interpreted as a cutoff, beyond which the repulsive
potential vanishes. To conclude this part of our presentation,
we mention that S0 is defined as

where the three parameters R, �, and γ are chosen to match the
corresponding values of S1 and its two lowest derivatives at r
) r1.

The number of division points r1, r2, ..., rn+1 should be rather
small. For pairs of elements not showing large diversity of
bonding mechanisms (e.g., for VCH

rep or VHH
rep ), a choice of two to

three division points seems to be sufficient. For more compli-
cated cases (e.g., for VCC

rep), a few additional division points may
give a better description of the potential. We have foundsfor
the reasons that we discuss latersthat using a large number of
division points may lead to unphysical shapes of the reproduced
repulsive potentials.

Continuity Equations. In the following, we are referring to
one specific repulsive potential VXY

rep, X and Y being two different
types of atoms. It is possible to eliminate 4n (out of 5n) unknown
parameters ak, i by imposing the spline continuity conditions
given by

where the primes denote subsequent derivatives and i ) 1, 2,
..., n.

The remaining n unknown parameters defining each of the
repulsive potentials are fitted to reproduce a set of atomization
energies and equilibrium structures for a chosen group of
molecules. The atomization energies and equilibrium structures
can be obtained either directly from experiment or from some
accurate quantum chemical method. In the next two sections,
we show how the SCC-DFTB atomization energies and equi-
librium geometries can be used to obtain further conditions.
While the continuity equations need to be exactly fullfilled, all
other equations give an either over- or underdetermined system
of linear equations. In the Appendix, we derive the system of
linear equations arising from all mentioned conditions and show
how it can be solved using the singular value decomposition.

Energy Equations. The total SCC-DFTB energy of a
molecule M can be divided into two parts, the electronic part
Eel given by the first two terms of eq 8 and the repulsive part
Erep given by the third term of eq 8

The atomization energy Eat of the molecule M is given by

Sµν ) 〈φµ|φν〉 and

Hµν
0 ) {εµ

neutral unconfined atom if µ ) ν
〈φµ|Ĥ(FA

0 + FB
0)|φν〉 if A * B

0 otherwise

(5)

qA ) 1
2 ∑

i

occ

ni ∑
µ∈A

∑
ν

(cµi*cνiSµν + cνi*cµiSµν) (6)

Ĥµν ) Ĥµν
0 + 1

2
Sµν ∑

C

∆qC(γAC + γBC) (7)

Etot ) ∑
iµν

cµicνiHµν
0 + 1

2 ∑
AB

∆qA∆qBγAB + ∑
A>B

VAB
rep(rAB)

(8)

Si(r) ) ∑
k)0

4

ak,i(r - ri)
k (9)

S0(r) ) R exp(�r + γ) (10)

Si(ri+1) ) Si+1(ri+1) (11)

Si′(ri+1) ) Si+1′ (ri+1) (12)

Si′′(ri+1) ) Si+1′′ (ri+1) (13)

Si
′′′(ri+1) ) Si+1

′′′ (ri+1) (14)

ESCC-DFTB ) Eel + Erep (15)

Eat ) ESCC-DFTB - ∑
A

EA
el (16)
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where the summation runs over all atoms constituting the
molecule M. A simple rearrangement of these equations gives

Note that the right-hand side (RHS) of eq 17 can be treated as
a constant because it does not depend on the sought spline
coefficients. The values of atomic electronic energies EA

el on the
RHS of eq 17 are usually computed as

where EA
spin denotes the atomic spin polarization energy, ni the

occupation number and εi the atomic Kohn-Sham eigenvalues.
However, it is possible to replace EA

el with empirical atomic
electronic energies, whose actual values will be determined via
the fitting process described below. With this ansatz, eq 17 can
be written as

where the quantities on the LHS depend on the unknown
parameters and the quantities on RHS are constants. Both fitting
strategies, that is, with using the atomic electronic energies given
by eq 17 and with using optimized atomic electronic energies,
will be employed in the remainder of this paper.

In the Appendix, a detailed derivation of the working energy
equation is provided.

Force Equations. The force vector can be decomposed in a
similar way as the SCC-DFTB total energy as

At the equilibrium geometry, this vector is identically equal to
zero, and we can write

The repulsive part of the force vector on atom A can be
expressed through the first derivatives of the repulsive potentials
as

In principle, it is also possible to employ nonequilibrium
structures in our fitting procedure. The only complication is that
for such a nonequilibrium structure, the total force vector in eq
20 is not equal to zero but equal to a reference total force vector
which must be calculated by some quantum chemical method.

In the Appendix, the force working equations are derived in
detail.

Additional Equations. It is sometimes convenient to impose
some special conditions on the fitted repulsive potentials. We
have found that the requirement that the repulsive potential Vrep

has a particular value (say V) at some particular point (say rz)

can be easily expressed in a similar fashion as the previously
discussed energy and force equations. Let us assume that the
point rz lies inside of the interval Ip, with rp being the
corresponding division point. Then, we can write

It is easy to see that similar additional conditions can be
imposed not only on repulsive potentials but also on their
derivatives. Note that particularly useful in practice are the
additional conditions imposed on the second-order derivatives
of the repulsive potentials at some particular points because they
help to adjust the values of harmonic vibrational frequencies
of a given type of vibration (e.g., the C-H stretch).

Reaction Equations. A simple modification of the presented
energy equations enables fitting the repulsive potentials also to
energies of chemical reactions. Let us consider for example a
simple reaction between molecules M1 and M2 given as

We would like to determine the shape of the repulsive SCC-
DFTB potentials that yields the correct value of the reaction
energy Erea for this reaction. For this purpose, we construct four
energy equations for molecules M1, M2, M3, and M4 as described
in eq 19. Adding these equations with the appropriate reaction
coefficients yields a working equation for reaction energies.
Details can be found in the Appendix.

Results

In this section, we describe in detail the fitting process used
to find optimal repulsive potentials. In the first step, the
electronic parameters are defined. Second, the fit and test sets
are specified, and finally, the additional parameters of the
repulsive potentials are determined.

The Electronic Parameters. We discuss the construction of
repulsive potentials with an electronic part constructed with the
following form of the harmonic confining potential

Two different confining radii are used for each atom, r0
w and r0

d,
corresponding to the confinement of atomic orbitals and atomic
densities, respectively. A good choice for r0

w is found to be twice
the covalent radius of the respective element; this value can be
further optimized.2 As discussed in refs 15 and 5, the determi-
nation of r0

w can be compared with the optimization of a basis
set, whereas r0

d is an empirical parameter. In the present paper,
the following initial confining radii are chosen: r0

w(H) ) 3.0,
r0

d(H) ) 2.5, r0
w(C) ) 2.7, and r0

d(C) ) 7.0. These values of
confining radii for hydrogen and carbon will be further
optimized in the present study. As mentioned in eq 18, the
electronic energy of an atom A is defined as

∑
A>B

VAB
rep(rAB) ) Eat - Eel + ∑

A

EA
el (17)

EA
el ) ∑

i

occ

niεi
A + EA

spin (18)

∑
A>B

VAB
rep(rAB) - ∑

A

EA
el ) Eat - Eel (19)

FSCC-DFTB ) Fel + Frep (20)

Frep ) -Fel (21)

FA
rep ) - ∑

B*A

rA - rB

rAB

dVAB
rep

dr |r)rAB
(22)

Vrep(rz) ) V ) Sp(rz) ) ∑
k)0

4

ak,p(rz - rp)
k (23)

n1M1 + n2M2 f n3M3 + n4M4 (24)

V̂conf ) ( r
r0

)2
(25)

EA
el ) ∑

i

occ

niεi
A + EA

spin (26)
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The atomic Kohn-Sham eigenvalues εi are calculated within
the DFT framework using the PBE functional10 and uncom-
pressed atomic orbitals and densities (r0

w f ∞ and r0
d f ∞).

The last term EA
spin describes the atomic spin polarization energy,

which can easily be calculated from DFT.35 The actual values
of εi

A, EA
spin, and EA

el for H and C are given in Table 1.
Note that the original fitting procedure1 used the LDA spin

polarization energies along with the repulsive potentials deter-
mined by taking the difference of the reference energy and the
SCC-DFTB electronic energy

for a predefined set of reference molecules. The LDA spin
polarization energies for hydrogen and carbon are EH

spin )
-0.0330 and EC

spin ) -0.0439.
In this work, we use the fitting procedure as described in the

previous section and apply it using the following two ap-
proaches. In approach 1, the atomic electronic energies EA

el are
treated as free parameters and are optimized together with the
parameters of the repulsive potentials. In approach 2, the
calculated atomic electronic energies from Table 1 are used,
and only the parameters of the repulsive potentials are optimized.
Therefore, in approach 2, the atomic energies are not optimized.

In total, we optimize six different sets of repulsive potentials,
three using approach 1 and three using approach 2. Within each
approach, one set of repulsive potentials is determined for the
original confining radii, one for optimized confining radii and
one for confining radii optimized, to give optimal performance
for the vibrational frequencies. The considered parameter sets
are listed in Table 2. The optimal values of the atomic electronic
energies EA

el for the three sets of repulsive potentials, opt1, opt3,
and opt5, are given in Table 3.

Training Sets. The actual fitting procedure of Erep is done in
two consecutive steps. In the first step, a training set 1 is used
to find the parameters defining each Erep. The training set 1
contains experimental structures of hydrogen, methane, ethyne,

ethene, and ethane (for references, see Supporting Information).
These molecules are chosen because they represent the most
important bonding situations occurring in molecules consisting
of carbon and hydrogen. Unfortunately, the repulsive potentials
obtained using such a training set produce large errors for the
equilibrium geometries of cyclopropene and 2-butyne in the case
of approach 1. To remedy this problem, the experimental
equilibrium geometries of these two molecules have been
included in the training set 1 for opt1, opt3, and opt5. The
reference experimental atomization energies are taken from the
CCCBDB database.36 The vibrational zero-point energies have
to be excluded from these values because SCC-DFTB is not
parametrized to enthalpies at 0 K or to heats of formation at
298 K but to energies excluding the vibrational and thermal
contribution. The zero-point energy contribution has been
approximated as a half of the sum of the experimental
fundamental frequencies. For hydrogen, methane, ethyne, ethene,
and ethane, these energies are 109.6, 419.5, 405.1, 562.7, and
711.4 kcal/mol, respectively. For cyclopropene and 2-butyne,
only the force equations are used in the parametrization process.

In the second step, the performance of the fit is evaluated
using a training set 2, which contains atomization energies,
equilibrium geometries, and vibrational frequencies of 15
molecules together with 32 selected reaction energies. Details
are given in the Supporting Information. The reason for
employing a second, larger training set is the following. The
division points and additional equations for each repulsive
potential have to be specified as an initial step of our fitting
procedure. This is a nontrivial problem and will be discussed
in more detail below. Dependent on the performance of the fit
for the training set 2, the division points are changed, either
moved, deleted, or added. Then, the repulsive potentials are
refitted according to the first step and again tested using the
training set 2. This procedure is iterated until a satisfactory
performance is found.

Parameters Defining the Repulsive Potentials. In principle,
the division points rp and the cutoff radii rn+1 defining the spline
functions of the repulsive H-H, C-H, and C-C pair potentials
can be freely chosen. Clearly, the shortest bond length between
atom types X and Y should lie in the first interval I1

XY, that is, it
should be larger than the first division point r1

XY.
As discussed in detail in ref 2, a cutoff radius is introduced

for the repulsive potential beyond which the potential and its
derivatives are zero. The cutoff radius in the standard param-
etrization of SCC-DFTB was chosen to be smaller than second
neighbor distances, resulting in cutoff radii of 4.3, 3.5, and 2.64
atomic units (au) for C-C, C-H, and H-H, respectively. Here,
the same cutoff radii are used, except for C-C, where a cutoff
of 4.8 au is applied. This is larger than second neighbor distances
in some molecules (e.g., benzene, propene, propane, cyclohex-
ane); however, the potential decays rapidly, being negligible at
the second neighbor distance.

The number of intervals is another free parameter which is
related to the number of fitting objectives. For example, in the
parametrization of the H-H potential, we have only three
objectives, the atomization energy, the equilibrium bond length,
and the stretch frequency of the hydrogen molecule, which can
directly be connected to the repulsive potential and its first and
second derivatives. As described in the methods section, for
each interval, there is only one free parameter to be determined;
all others are defined by the continuity equations. Thus, three
intervals for the H-H potential are necessary to fulfill the three
objectives. The same holds for the C-H potential. The different
C-H bonds of the molecules in training set 1 are similar such

TABLE 1: Spin Polarization Energies EA
spin, Atomic Orbital

Energies εp
A and εs

A, and Total Atomic Electronic Energies EA
el

(in Hartree) Obtained from Atomic PBE Calculations

element EA
spin εp

A εs
A EA

el

H -0.0411 -0.2386 -0.2797
C -0.0455 -0.1944 -0.5049 -1.4440

TABLE 2: Summary of Parameter Sets Developed in This
Study

original
confining

radii

optimized
confining

radii

frequency
optimized

confining radii

approach 1 opt1a opt3b opt5c

approach 2 opt2a opt4d opt6d

a Confining radii r0
w(C) ) 2.7, r0

d(C) ) 7.0, r0
w(H) ) 3.0, r0

d(H) )
2.5. b Confining radii r0

w(C) ) 2.7, r0
d(C) ) 5.0, r0

w(H) ) 3.3, r0
d(H)

) 3.0. c Confining radii r0
w(C) ) 3.0, r0

d(C) ) 7.0, r0
w(H) ) 2.7,

r0
d(H) ) 2.5. d Confining radii r0

w(C) ) 3.0, r0
d(C) ) 7.0, r0

w(H) )
2.5, r0

d(H) ) 2.5.

TABLE 3: Optimized Atomic Electronic Energies (in
Hartree)

opt1 opt3 opt5

EH
el -0.2555 -0.2514 -0.2524

EC
el -1.4527 -1.4176 -1.4472

Erep(R) ) {Eref(R) - Eel}reference system (27)
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that we have again only three objectives as above, and only
three intervals are necessary for the repulsive potential. For
C-C, the situation is different since the single, double, and triple
bonds have substantially different characteristics. In principle,
one could fit the zeroth, first, and second derivatives to reference
data for ethane, ethene, and ethyne using nine intervals (three
intervals for each type of bond as above). However, for systems
with intermediate bond lengths (e.g., benzene), such a fit results
in large errors. This is due to the fact that the slope and curvature
of the intervals of the single, double, and triple bonds do not
tend to match at the division points. A pragmatic solution to
this problem is to use intervals covering more than one bond
type, which leads to an interpolation between these two regions.
This of course means that choosing the optimal interval division
for the C-C potential is an empirical procedure of trial and
error. As a result, an extensive scan for different numbers and
position of intervals had to be performed because the properties
of training set 2 depend sensitively on the choice of the intervals.
The division points found this way define the intervals and are
listed for each parameter set in the Supporting Information.
(Another possible way to avoid this empirical search protocol
for suitable intervals could be using equidistant intervals as a
first fit. In a second step, the resulting spline function is
interpolated to a single polynomial. Preliminary tests show that
the artifacts in the first and second derivatives are eliminated
by this technique.)

For the fitting approach 1 (i.e., including the fit of atomic
electronic energies), the situation becomes even more compli-
cated since two more parameters, EC

el and EH
el, have to be

determined. Both parameters appear in all energy equations
(except for hydrogen, where only EH

el appears) and thus affect
all repulsive potentials. That means, for example, that for opt1,
we use only two intervals for the C-H potential in order to
leave one degree of freedom for the determination of the atomic
electronic energy. We have tested in a “brute force” manner
several numbers and positions of the intervals; details can be
found in the Supporting Information. Note that the search for
the best possible intervals depends on the choice of additional
equations (see below) if good performance of vibrational
frequencies is also desired.

So far, only fitting schemes using equilibrium geometries and
atomization energies have been discussed. In order to achieve
a good performance also for vibrational frequencies, additional
equations have to be included in the fitting process. We choose
the form VXY

′′rep(rz) ) V, where the second derivative of a pair
potential X-Y at the distance rz is set to a certain value V. For
H2, rz is set to the equilibrium distance, and V is chosen
appropriately in order to reproduce the experimental fundamental
frequency of H2 with good accuracy. Note that, in general, the
additional predefined conditions are not exactly fulfilled in
the optimization scheme due to the limitations resulting from
the applied least-squares fit.

As a first guess for V, one can take the value of the second
derivative of the H-H potential at a given point, which is then
varied by hand. Similarly, for C-H, V is chosen to minimize
the error of the C-H stretch frequencies in the training set 2.
In the more complicated case of the C-C potential, we have
considered for simplicity only the C-C stretch modes of ethane,
ethene, and ethyne. Unfortunately, inclusion of additional
equations improves the C-C stretch frequencies at the cost of
geometries and atomization energies, which shows the limits
of optimization within the SCC-DFTB framework. For a further
improvement, modifications of the electronic part seem to be
necessary. By choosing a set of additional equations, the ratio

of errors for frequencies and for geometries or atomization
energies can be controlled. For future work, an appropriately
weighted objective function combined with an optimization
algorithm could automatically find a desired ratio. Such
algorithms for similar problems have recently been reported,
for example, in refs 25 and 37.

Neglecting the additional equations in the fitting scheme leads
to substantial errors in the vibrational frequencies as large as
2000 (H2) and 500 cm-1 (C-H stretch in hydrocarbons). For
all of the parameter sets shown in Table 2, one additional
equation for the H-H potential and one for the C-H potential
is needed. Due to limits of optimization, we decided to create
additional sets of repulsive potentials (opt5 and opt6), which
show improved performance for vibrational frequencies. All
additional equations are listed in Table 4.

Determination of Erep Using the Original Confining Radii.
In the first step, we keep the original electronic confining radii
and optimize only the repulsive potentials. Set opt1 is created
using fitting approach 1, that is, fitting also atomic electronic
energies. For set opt2, we apply fitting approach 2 using the
calculated atomic electronic energies from Table 1. Interestingly,
set opt1 shows large errors in the C-C stretch frequencies if
constructed without additional equations for C-C. Including
two additional equations for C-C reduces these errors signifi-
cantly. For set opt2, the errors in the frequencies are reasonably
small already without additional equations and even lower in
comparison to the original mio parameter set (see Table 5).
Including additional equations for the C-C potential reduces
errors for frequencies but worsens geometries and atomization
energies; therefore, they were not applied.

Table 6 summarizes the performance of opt1 and opt2 in
comparison to the original mio parameter set and with the
parameter set M2005 optimized by Małolepsza et al. for
vibrational frequencies.32 The main advantage of the new sets
of repulsive potentials is a significant improvement in the
computed atomization energies; the mean absolute error for 14
atomization energies is reduced from 36.5 (mio) to 4.1 and 4.0
kcal/mol (opt1 and opt2, respectively). It is worth mentioning
here that in the original mio parameter set, the atomization
energies were consistently overestimated by roughly 5% and
that the error of 36.5 kcal/mol could be reduced to only 8.8
kcal/mol just by employing the spin polarization energies
derived from PBE (instead of LDA). Since the LDA values are
consistently larger than the PBE ones, it can be concluded that
the mio parameters lead to a consistent overbinding for all

TABLE 4: Additional Equations of the Form VXY
′′rep(rz) ) V

X-Y rz V(opt1) V(opt2) V(opt3) V(opt4) V(opt5) V(opt6)

H-H 0.743 0.413 0.420 0.416 0.415 0.4075 0.415
C-H 1.081 0.400 0.400 0.400 0.380 0.400 0.380
C-C 1.203 1.300
C-C 1.300 0.950 0.980 0.950
C-C 1.330 0.800
C-C 1.505 0.340 0.320 0.310 0.370

TABLE 5: Experimental Fundamental CC Stretch
Frequencies and Deviation of Different Parameter Sets (in
cm-1)

molecule expa opt1 opt2 opt3 opt4 opt5 opt6 miob M2005c

ethyne 1974 +13 +50 -30 +33 +62 -35 +146 +3
ethene 1623 +138 +191 +132 +142 +129 +32 +200 +67
ethane 995 +62 +43 +16 +30 +15 +29 +137 -26

a Experimental values from ref 32. b Parameter set from ref 1.
c Parameter set from ref 32.
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molecules. It is interesting to mention that this error can be
further reduced to 3.8 kcal/mol if the original electronic atomic
energies defined by eq 18 are replaced by empirical values
obtained by fitting the total SCC-DFTB atomization energies
to the experimental atomization energies of the training set 2.
Geometries are well reproduced by all sets, while vibrational
frequencies are more accurate with opt1 and opt2 in comparison
to the original mio set but do not achieve the accuracy of M2005.
For reaction energies, no major improvement can be achieved,
showing again that the original mio fit leads to a set of quite
consistent repulsive potentials, however, including a large
overbinding per bond.

Figure 1 shows the shape of repulsive potentials for mio, opt1,
and opt2. Set opt1 is more repulsive than opt2 for the C-H
and H-H potentials, whereas for the C-C potential, this
tendency is reversed. One main difference between opt2 and
mio arises from the different spin polarization energies used in
the fitting (PBE calculated values versus LDA ones). This is
reflected in the relatively small shift of the curves between mio
and opt2. The eminent shift of the repulsive potentials C-H
and H-H of opt1 shows that the optimization of the atomic
parameters EA

el leads to a difference in the potential depth. This
difference is effectively incorporated into the optimized atomic
electronic energies. Our tests so far indicate that this shift can
be different for different atom pairs. This can become prob-
lematic since the effective binding energy is no longer repre-
sented by the “depth” of the total energy (electronic plus
repulsive) but is transferred to the atomic values. When
comparing the opt1 binding energy curves with those from some
high-level reference quantum calculation, the opt1 potentials
can be more shallow; the difference is captured by the atomic
values. This may lead to problems when new atom types are
included without refitting the parameters of the old atom types,
that is, consistent fits can only be achieved when all desired
atom types are fitted at once.

This fact can be illustrated with the example reaction C2H6

+ H2O f CH3OH + CH4. The reaction enthalpy at 0 K of the

mio set is 12.1 kcal/mol and reproduces the G3B338 result (11.7
kcal/mol). Replacement of the C-C, C-H, and H-H repulsive
potentials with the opt1 potentials gives 24.7 kcal/mol, and it
is 5.4 kcal/mol for opt2. Set opt1 yields a large error, enforcing
the assumption that the opt1 potentials C-C and C-H are not
transferable to the mio potentials C-O and O-H. In opt2, the
difference to the mio result is much smaller and mainly due to
the shift of the C-C repulsive potential (see Figure 1). While
the mio parameter set overbinds C-C and C-O, this overbind-
ing is reduced for C-C in opt2. We expect similar reaction
enthalpies for mio and opt2 when also reducing the C-O
overbinding with the presented fitting procedure. Note that for
reactions, the atomic electronic energies cancel out. (Another
example reaction is C2H6 + NH3 f CH3NH2 + CH4, where
the same arguments hold. The mio parameter set gives a reaction
enthalpy at 0 K of 8.1 kcal/mol, very similar to the G3B3 result
of 7.9 kcal/mol. Using the C-C, C-H, and H-H potentials of
opt1 and all further pair potentials from the mio set yields 20.7
kcal/mol; for opt2, it is 1.4 kcal/mol.)

The mio repulsive potential corresponding to the CC pair
displays a characteristic hump at around 3.6 au. The origin of
this hump is closely related to the previous paradigm of
determination of the repulsive potentials. The short-range part
of the CC mio was obtained from auxiliary DFT calculations
for a set of small molecules (C2H2, C2H4, and C2H6). This short-
range potential was subsequently down-shifted to ensure correct

TABLE 6: Mean and Maximum Absolute Deviation of
Several Properties of the Training Set 2

propertya Nb opt1 opt2 opt3 opt4 opt5 opt6 mioc M2005c,d

Eat

(kcal/mol)
14 4.1 4.0 1.4 4.0 8.3 5.0 36.5 40.6

Emax
at

(kcal/mol)
14.6 19.1 4.0 16.2 27.8 23.3 87.1 88.3

r (Å) 41 0.007 0.006 0.008 0.006 0.007 0.014 0.010 0.016
rmax (Å) 0.023 0.030 0.025 0.029 0.022 0.041 0.026 0.040
a (deg) 25 0.6 0.6 0.6 0.5 0.5 0.7 0.5 1.2
amax 1.8 1.7 1.8 1.9 2.0 2.1 1.7 2.7
ν (cm -1) 305 42 46 48 39 38 32 61 31
νmax

(cm -1)
161 229 250 185 175 163 352 123

Erea

(kcal/mol)
32 5.1 4.2 2.4 4.7 6.6 7.2 5.2 8.3

Emax
rea

(kcal/mol)
14.8 14.3 6.9 15.5 32.4 23.9 14.9 46.4

a Atomization energies Eat, bond lengths r, bond angles a,
harmonic vibrational wavenumbers ν, and reaction energies Erea;
max stands for maximum absolute deviation. The reaction energy is
compared to G3B338 results at 0 K. The zero-point energies are
calculated using harmonic vibrational frequencies calculated
analytically with SCC-DFTB.39 All other properties are compared to
expermiental values. For details, see Supporting Information.
b Number of comparisons. c For the calculation of Eat, the originally
used LDA spin polarization energies were taken; for PBE spin
polarization energies, the MAD for mio is 8.8 and the maximal
absolute deviation is 30.5 kcal/mol, and that for M2005 is 72.4 and
155.0 kcal/mol. d Hydrogen was excluded since these parameters
were not optimized for this molecule.

Figure 1. Original and optimized repulsive potentials.

11872 J. Phys. Chem. A, Vol. 113, No. 43, 2009 Gaus et al.



energetics of hydrocarbons. On the other hand, the long-range
part of the potential was required to vanish beyond 4.3 au.
Combining the two segments of the mio CC potential into a
single curve resulted in producing the unphysical hump men-
tioned earlier. Clearly, this superfluous behavior of the potential
is one of the drawbacks of constructing the repulsive potentials
in a semimanual manner. As can be seen from the curves
presented in Figure 1, this behavior can be totally eliminated
while using the automatized approach.

The fact that the H-H repulsive potential becomes negative
(i.e., attractive) may lead in practice to problems in molecular
dynamics simulations when the interatomic distance between
two nonbonded hydrogen atoms becomes too small. This
potential difficulty can be alleviated using modified electronic
confining radii, as discussed below.

Optimization of Erep and the Confining Radii. As the next
step, we have tested different values of confining radii used for
obtaining the atomic wave functions (2.4, 2.7, and 3.0 for carbon
and 2.5, 2.7, 3.0, and 3.3 for hydrogen) and the atomic input
densities (5.0, 7.0, and 9.0 for carbon and 2.5, 3.0, 3.5, and 5.0
for hydrogen). The repulsive potentials VAB

rep have been deter-
mined for every combination of these confining radii. We again
used the two approaches mentioned above, including (opt3 and
opt5) and excluding (opt4 and opt6) the fit of the electronic
atomic energies EA

el. The parameter sets opt3 and opt4 are
optimized to give accurate atomization energies and geometries,
while opt5 and opt6 are designed to improve vibrational
frequencies. The additional conditions are found to be similar
for different confining radii. They are further optimized once
the “best” confining radii have been found and are shown in
Table 4. The confining radii are determined by testing all
parameter sets on training set 2. Table 6 gives an overview over
all constructed repulsive potentials indicating that various
properties may require different electronic parameters, that is,
this demonstrates the limits of the transferability of the electronic
part of DFTB.

The repulsive potential sets opt3 and opt4 are fitted to give
the most accurate atomization and reaction energies with
acceptable errors for equilibrium geometries and frequencies.
While geometries are described satisfactorily, opt3 shows much
smaller errors for atomization and reaction energies. In param-
eter set opt4 (as well as in opt1 and opt2), large atomization
energy errors are found for small cyclic structures such as
cyclopropane and cyclopropene. The superb performance of opt3
for the atomization and reaction energies is further confirmed
on a larger testing set in the following section. A slight shadow
on the future performance of opt3 is cast by the fact that adding
additional elements to the fitting scheme may severely perturb
the delicate balance between EC

el and EH
el necessary for obtaining

the reported very good agreement between the SCC-DFTB and
experimental atomization and reaction energies. The perturbation
is inevitably associated with the fitting procedure since the
parameters for all elements are linked via the atomic electronic
energies as discussed above.

The repulsive potential sets opt5 and opt6 are constructed to
obtain small errors for vibrational frequencies. Geometries are
still accurate; however, the errors of atomization and reaction
energies are much larger now. The results for the training set 2
(see Table 6) show improved vibrational frequencies with errors
comparable to those of the M2005 parameter set. In comparison
to the original mio parameter set, we want to point out the
improvement of the CC stretch frequencies as shown in Table
5.

The optimization of the confining radii significantly improves
the atomization and reaction energies for opt3. For the other
parameter sets, only small improvement is achieved. This shows
that there is only a limited influence of the confining radii on
the performance of SCC-DFTB. The difference between opt5
and opt3 stems from a different choice of the confining radii
and the values for the additional equations. The input for the
fitting procedure of opt6 differs from that of opt4 only by three
additional equations for the C-C potential, as shown in Table
4. It is clear from the presented data that the quality of the C-C
stretch frequencies can only be improved at the cost of
deteriorating the atomization and reaction energies. As discussed
above, we believe that this is an effect of the approximations
inherently present in the current SCC-DFTB framework.

Test of the Parameters on Larger Molecule Sets

The G3/99 Molecule Set. In this subsection, we perform a
test on the G3/9940 molecule set containing H2 and 38
hydrocarbons. The tested properties include heats of formation
at 298.15 K and equilibrium geometries (see Table 7). The heats
of formation are calculated as described in ref 41. The enthalpies
of formation for gaseous atoms at 0 K and the (H298 - H0)
values for hydrogen and carbon in their standard states are taken
from experiment (∆Hf

0(0 K) for hydrogen and carbon is 51.63
and 169.98 kcal/mol, respectively, and the corresponding values
of (H298 - H0) are 1.01 and 0.25 kcal/mol).41 The heat capacity
corrections for molecular vibrations are estimated as

using harmonic vibrational frequencies ν calculated analytically
with SCC-DFTB.39 R is the molar gas constant, θ is the
vibrational temperature, T is the temperature, and h and kB are
the Planck and the Boltzmann constants, respectively. Further
thermal corrections are included within the classical approxima-
tion for translations ((3/2)RT), rotations ((3/2)RT for nonlinear
and RT for linear molecules), and the PV term (RT).

TABLE 7: Mean and Maximum Absolute Deviation of
Several Molecular Properties of the G3/99 Test Set

propertya Nb opt1 opt2 opt3 opt4 mio PBEc B3LYPc

∆Hf
(kcal/mol)

39 4.8 5.8 2.2 7.1 55.4d 26.0 7.4

∆Hf
max

(kcal/mol)
19.2 29.0 16.3 25.2 114.8d 81.3 17.3

∆Hf
(kcal/mol)e

39 4.3 4.0 2.1 3.7 4.1 1.8 3.4

∆Hf
max

(kcal/mol)e
19.7 25.1 16.2 20.5 21.7 7.4 9.6

r (Å) 196 0.008 0.008 0.008 0.007 0.011 0.008 0.003
rmax (Å) 0.155 0.267 0.038 0.142 0.035 0.020 0.016
a (deg) 177 0.6 0.7 0.6 0.6 0.5 0.4 0.4
amax (deg) 14.4 19.9 8.2 13.4 4.8 1.9 1.9
d (deg) 5 1.5 1.5 1.3 2.1 1.5 0.7 1.0
dmax (deg) 6.3 6.3 5.5 8.8 6.7 2.0 2.6

a Heats of Formation ∆Hf at 298 K, bond lengths r, bond angles
a, and dihedral angles d; max stands for maximum absolute
deviation. Geometric data is compared to the MP2/cc-pVTZ
calculations. For details, see Supporting Information. b Number of
comparisons. c Basis set 6-311G(2d,2p). d ∆Hf calculated using LDA
spin polarization energies; taking PBE values instead gives a MAD
of 13.2 kcal/mol and a maximal absolute deviation of 34.2 kcal/mol.
e Calculated using atomic electronic energies fitted to 14
experimental atomization energies of training set 2.

Evib ) R ∑
k

θk(1
2
+ 1

eθk/T - 1) where θk )
hνk

kB

(28)
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Further, two approaches for the calculation of atomization
energies have been chosen. In the first approach, we have used
the atomic electronic energies as discussed in the Theory section.
The results are displayed in the first two lines of Table 7. In
the second approach, the atomic electronic energies are fitted
to yield least-squares errors for the 14 experimental atomization
energies of training set 2. These results are displayed in the
third and fourth lines of Table 7. It is not surprising that the
latter approach reveals smaller errors for the heats of formation.
The fitted atomic electronic energies are listed for each
parameter set in Table 8. Heats of formation are also calculated
for the widely used density functionals PBE and B3LYP. For
PBE calculations, the heats of formation are largely underes-
timated, whereas for B3LYP, they are overestimated. The errors
are readily reduced when fitting the atomic energies. The
corresponding values can be found in Table 8. Substantial
improvements using optimized atomic energies have been noted
in other studies.27,42-45

Set opt3 shows an excellent performance with a MAD of
2.2 kcal/mol for heats of formation; the largest deviations are
found for azulene and methylene (respectively, -7.3 and -16.3
kcal/mol). The SCC-DFTB bond lengths and angles compared
to MP2/cc-pVTZ geometries give an overall MAD of 0.008/
0.007 Å and 0.6/0.6° for the opt3/opt4 parameter sets, showing
good agreement with the reference data. Similar accuracy is
yielded for the original mio, opt1, and opt2 parameter sets and
both tested DFT methods. The largest discrepancies in the opt3/
opt4 equilibrium geometries are observed for bicyclobutane,
0.038/0.142 Å for bond distances and 8.2/13.4° for bond angles.
The largest MAD for opt3 is observed for the CdC and C-H
bonds (0.008 Å), and the largest MAD for opt4 is for the C-C
bond (0.013 Å). Keeping in mind that for bicyclobutane an
exceptional large deviation is found, all other bond lengths are
reproduced with good accuracy. The (signed) mean deviation
shows that the CtC bonds tend to be shorter, whereas all other
bond lengths tend to be larger than the MP2/cc-pVTZ reference.
More details can be found in the Supporting Information.

Larger Molecule Sets. Recently, Jorgensen and co-workers
published a collection of experimental heats of formation,
isomerization enthalpies, conformational energetics, and MP2/
6-31 g(d) geometries,46 which are very suitable to benchmark
approximate methods. (While the comparisons on the G3/99
test set were made with MP2/cc-pVTZ geometries, MP2/6-
31G(d) geometries for the Jorgensen test set were used. This
facilitates comparison to the data compiled in refs 27 and 46.
The mean absolute deviation (MAD) of MP2/6-31G(d) com-
pared to MP2/cc-pVTZ bond lengths for the G3/99 test set is
found to be only 0.004 Å. All data are listed in the Supporting
Information.) We used this set to test our new parametrization,
as shown in Tables 9-11.

Heats of Formation. The best performance is found for the
parameter set opt3; with a MAD of 2.6 kcal/mol, it is
comparable to the results of PDDG-PM3. The largest deviations

are found for cubane (-35.5 kcal/mol) and diamantane (-13.0
kcal/mol). In general, large deviations are found for large
aromatic systems such as anthracene, azulene, and biphenylene,
bicyclic structures, and highly substituted cyclic compounds.
Similar problems have been detected for opt4. As already
mentioned for the G3/99 test set, a refitting of the atomic
electronic energies on the 14 experimental atomization energies
of training set 2 generally reduces this error (third and fourth
lines of Table 9). This effect is significant, for example, for the
mio set, where the mean absolute deviation is reduced to only
3.9 kcal/mol. Note that this refitting of atomic electronic energies
is only done for hydrocarbons. When including further elements,
a refit also influences hydrogen and carbon; thus, also the heats
of formation for hydrocarbons are expected to be less accurate.

Geometries. Generally, SCC-DFTB describes geometries very
well, being slightly more accurate than PDDG-PM3 (with the
exception of the frequency-optimized sets opt6 and M2005).
Again, the best performance is observed for the opt3 and mio
sets with maximal absolute deviations for bond lengths smaller
than 0.04 Å. The largest bond length error is consistently found
for the bridge CC bond in bicyclobutane (up to 0.27 Å with
opt2 and M2005). The second largest deviation is already much
smaller; the error for the C-C bond in 1,3-butadiyne with opt2,
opt3, and opt4 is smaller than 0.024 Å, and the error for the
CtC bond in acetylene with opt1 and opt5 is smaller than 0.031
Å. Only for the frequency-optimized set opt6 is the second
largest error 0.046 Å for the C-C bond of 1,3-butadiyne. Similar
observations are found for bond angles and dihedrals. While
bicyclobutane gives exceptionally large errors, deviations for
all other bond angles are within 3.4°, and for dihedrals they are
within 8°.

Isomerization Enthalpies. Table 10 compares calculated
enthalpies (including corrections for the zero-point energy and
temperature, as described above) for a selected set of isomer-
ization reactions.27 The averaged deviation for the original mio
parameter set is 4.5 kcal/mol. The performance of SCC-DFTB
can be improved with the parameter set opt3, giving a MAD of
only 2.2 kcal/mol, which is of comparable accuracy as that for
PDDG-PM3 (2.4 kcal/mol). The main reason for the better
performance of the opt3 set over the mio set is a better
description of small cyclic hydrocarbons (cyclopropene and
cyclopropane) by the former set. The parameter set opt4 on the
other hand does not show any improvement over the original
mio set. Probably the most serious problem of opt4 is the wrong
sign of the isomerization enthalpies for the isomerization of
sterically crowded alkanes to the corresponding linear isomers
(2,2-dimethylpropane f n-pentane and 2,2,3,3-tetramethylbu-
tane f n-octane), leading to qualitatively wrong information
about the relative stability of linear alkanes. A dispersion
correction as proposed in ref 13 improves these results only
marginally, yielding isomerization enthalpies of 0.0 and -2.0
kcal/mol. For the sets opt1, opt2, opt5, opt6, and M2005, the
mean absolute deviations are 4.6, 4.9, 5.9, 5.7, and 8.1 kcal/
mol, respectively.

Conformational Energetics. The comparison of results shown
in Table 11 is based on a small compilation of conformational
energies given in ref 27. All of the tested parameter sets give
performance similar or slightly better than PDDG-PM3. The
largest error is found for cis-1,3-dimethylcyclohexane. Qualita-
tive errors are found only with the M2005 parameter set for
butane, methylcyclohexane, and cis-1,3-dimethylcyclohexane,
for which the stability pattern is reversed with respect to
experiment. This behavior is probably related to significantly
larger cutoff radii used to construct the M2005 repulsive

TABLE 8: Atomic Electronic Energies Fitted to 14
Experimental Atomization Energies of Training Set 2

element opt1 opt2 opt3 opt4 opt5

H -0.2564 -0.2802 -0.2514 -0.2808 -0.2544
C -1.4516 -1.4416 -1.4176 -1.4404 -1.4392

opt6 mio M2005 PBEa B3LYPa

H -0.2819 -0.2762 -0.2603 -0.4965 -0.5026
C -1.4422 -1.4545 -1.4409 -37.8066 -37.8538

a Fitted for basis set 6-311G(2d,2p).
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potential. For M2005, the cutoff radii are set to 7 atomic units,
whereas for mio, the cutoff radii are chosen in a way to ensure
that the second neighbor interaction vanishes. This results in
cutoff radii of 2.64 au for the H-H, 3.5 au for the C-H, and
4.3 au for the C-C repulsive pair potential. A geometrical
analysis of the structures of anti- and gauche-butane shows that
the distances between the first and third carbon atoms is 4.916
and 4.939 au, respectively. Because for shorter distance the
repulsive energy is higher, the anti conformer is artificially
destabilized by the M2005 parameter set. Clearly, for the mio
set, the analogous repulsive energy contribution is zero for both
conformers.

Cations, Radicals, and Anions. The heats of formation for
19 cations, radicals, and anions (species containing only carbon
and hydrogen) compiled by Jorgensen and co-workers27 show
a mean absolute deviation to experimental data of 9.4 kcal/mol
for PDDG/PM3. For the original mio parameter set, which uses
the PBE atomic spin polarization energies, a mean absolute
deviation of 10.8 kcal/mol is found. This deviation is reduced

to 9.3 kcal/mol only for the opt3 set; this value is similar to the
value of PDDG/PM3. For opt1, opt2, and opt4, the respective
errors are 11.0, 11.6, and 13.2 kcal/mol. When fitting the atomic
electronic energies to the atomization energies of training set
2, the mean absolute deviations do not change significantly.
More details can be found in the Supporting Information.

Vibrational Frequencies. The implementation of analytical
second derivatives39 greatly simplified the calculation of har-
monic vibrational frequencies within the SCC-DFTB formalism.
We have used this new functionality to determine the SCC-
DFTB frequencies for a group of 14 hydrocarbons representing
a variety of typical bonding situations. Mean and maximal
absolute deviations with respect to experimental fundamental
vibrational frequencies are given in Tables 12 and 13, respec-
tively. The contributions for doubly degenerate vibrations have
been included twice in the averaging, and those for triply
degenerate vibrations have been included thrice. The total
number of computed vibrational frequencies is 349. The number
of available experimental modes36,47 is only 346. Therefore, for

TABLE 9: Mean and Maximum Absolute Deviations of Several Molecular Properties of the Jorgensen Test Set

propertya Nb opt1 opt2 opt3 opt4 opt5 opt6 mio M2005 PDDGc

∆Hf 254 6.4 6.1 2.6 9.2 24.3 15.7 87.9d 159.0 2.6
∆Hf

max 32.8 29.1 35.5 29.4 76.3 66.9 184.6d 337.5 39.1
∆Hf

e 254 5.1 3.2 2.4 3.8 6.8 7.7 3.9 7.2
∆Hf

maxe 31.6 25.2 35.2 20.5 27.8 56.6 21.7 30.5
r 111 0.007 0.008 0.005 0.007 0.008 0.018 0.009 0.020 0.011
rmax 0.154 0.266 0.037 0.141 0.196 0.178 0.034 0.266 0.057
a 57 0.8 1.0 0.7 0.7 0.8 0.9 0.6 1.3 1.3
amax 16.4 21.9 10.2 15.4 18.6 17.5 6.8 22.1 11.8
d 20 1.6 1.9 1.0 1.7 1.9 1.7 1.3 2.7 2.9
dmax 8.2 9.6 5.9 9.3 8.9 7.8 9.4 13.4 17.1

a Heats of formation ∆Hf at 298 K in kcal/mol, bond lengths r in Å, bond angles a, and dihedral angles d in degrees; max stands for
maximum absolut deviation. Geometric data is compared to MP2/6-31 g(d) calculations. For details, see ref 46. b Number of comparisons.
c PDDG-PM3 values from ref 27. d ∆Hf calculated using LDA spin polarization energies; taking PBE values instead gives a MAD of 19.9 kcal/
mol and a maximal absolute deviation of 88.9 kcal/mol. e Calculated using atomic electronic energies fitted to 14 experimental atomization
energies of training set 2.

TABLE 10: Deviation from Experiment for Selected Isomerization Enthalpies (kcal/mol) at 298.15 K

expa mio opt3 opt4 PDDGa

propyne f allene 1.2 +4.0 +2.7 +4.8 +4.63
propyne f cyclopropene 21.8 +16.5 +6.5 +18.0 -0.23
propene f cyclopropane 7.9 +6.3 +0.5 +6.8 +0.29
trans-2-butene f cis-2-butene 1.1 -0.0 +0.1 -0.5 +0.53
2-methylpropene f trans-2-butene 1.3 -0.1 +0.6 -1.1 -1.91
trans-2-butene f 1-butene 2.8 +1.3 +0.8 +0.6 +2.18
1,3-butadiene f cyclobutene 11.3 +2.2 -3.8 +1.7 -3.51
cyclopentene f vinylcyclopropane 22.2 +11.5 +3.2 +9.1 +2.73
1-trans-3-pentadiene f 1,4-pentadiene 7.1 +1.0 +0.6 +0.2 -1.77
2,2-dimethylpropane f n-pentane 5.1 -2.4 -0.1 -5.3 +2.09
2,2,3,3-tetramethylbutane f n -octane 4.1 -3.4 +0.8 -7.4 +3.14
toluene f norbornadiene 46.7 +2.6 -4.2 +4.9 -2.72
styrene f cyclooctatetraene 35.8 +7.7 +5.3 +4.8 -4.92
mean absolute deviation 4.5 2.2 5.0 2.4

a Experimental and PDDG-PM3 values from ref 27.

TABLE 11: Deviation for Conformational Energetics (kcal/mol)

ref ∆Ea mio opt3 opt4 PDDGa

butane anti versus gauche 0.7 -0.2 -0.2 -0.4 -0.4
ethane anti versus eclipsed 2.8 -0.5 -0.7 -0.8 -1.7
methylcyclohexane eq versus ax 1.8 -0.9 -0.8 -1.3 -0.9
cis-1,3-dimethylcyclohexane eq,eq versus ax,ax 5.5 -2.1 -1.9 -3.3 -2.3
propene eclipsed versus anti 2.0 -0.9 -0.9 -1.0 -1.3
1,3-butadiene trans versus skew 2.5 -1.4 -0.9 -1.2 -1.8
mean absolute deviation 1.0 0.9 1.3 1.4

a Reference and PDDG-PM3 values from ref 27.
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twomodesof1,3,5-hexatrieneandonemodeofbicyclo[2,1,0]pentane,
the DFT harmonic vibrational frequencies (B3LYP48-50/cc-pVTZ51

with a scaling factor of 0.96536) have been used instead. The
unscaled SCC-DFTB frequencies are compared with the DFT
results (BLYP48,52/cc-pVTZ,51 unscaled). In order to compare
the intrisic accuracy, we decided to use unscaled SCC-DFTB
frequencies. Further, it has been shown that for the mio set, a
uniform scaling factor is very close to one.28 All of the DFT
calculations were performed using the GAUSSIAN 03 pro-
gram.53

The mean absolute deviations of the 349 analyzed vibrational
modes are noticeably reduced for all of the optimized parameter
sets in comparison to the original mio parameter set. The results
are most significantly improved for the frequency-optimized sets
opt5 and opt6, with deviations of 38 and 33 cm -1, respectively.
The latter set of repulsive potentials gives similar accuracy as
the M2005 parameter set (32 cm-1), but both of them give
approximately 15% larger error than the BLYP/cc-pVTZ
computational scheme (25 cm-1). The largest deviations to
experiment are observed for the SCC-DFTB frequencies of
allene, bicyclo[2,1,0]pentane, and spiropentane. A complete list
of all of the computed and experimental frequencies can be
found in the Supporting Information.

Linear Alkanes. Recent comparisons of heats of formation
for linear alkanes using G354 and B3LYP42 showed that both
computational schemes display a cummulative error, that is, that

the total error in the computed heats of formation grows with
the length of the chain. This is a systematic error which we
consider worth reducing or even eliminating. Using a dispersion
correction55 and fitting the atomic energies for DFT improves
the situation but does not solve this problem completely.42

Similar results are found for SCC-DFTB, as shown in Figure
2. For the mio set, the overbinding is obvious. For opt4, a small
underbinding is detected; it can be partially eliminated by
including a dispersion correction.13 No cumulative error is found

TABLE 12: Mean Absolute Deviation of Calculated Harmonic Vibrational Frequencies from Experimental Fundamental
Frequencies for a Group of 14 Hydrocarbons

molecule BLYPa opt1 opt2 opt3 opt4 opt5 opt6 mio M2005

methane 23 55 30 47 34 41 30 65 44
ethyne 32 30 83 101 57 47 54 70 28
ethene 19 40 60 50 39 36 36 49 34
ethane 20 40 34 28 29 26 24 52 28
allene 13 53 74 73 54 52 45 58 39
cyclopropane 17 43 56 52 42 35 37 55 33
propene 21 27 32 29 26 21 19 42 20
1,3-butadiene 18 35 48 49 33 31 27 46 21
bicyclo[2,1,0]pentane 50 40 46 45 40 41 34 52 42
spiropentane 32 52 58 59 47 41 40 68 52
cyclohexane 27 31 25 23 28 21 24 49 23
benzene 17 53 67 70 46 42 34 58 34
1,3,5-hexatriene 19 39 49 51 37 36 33 46 24
cubane 22 52 47 63 52 64 43 96 35
MAD (total)b 25 42 48 50 40 38 33 58 32

a Calculated with the cc-pVTZ basis set. b Mean absolute deviation of all 349 vibrational frequencies of the 14 molecules shown.

TABLE 13: Maximal Absolute Deviation of Calculated Harmonic Vibrational Frequencies versus Experimental Fundamental
Frequencies for a Group of 14 Hydrocarbons

molecule BLYPa opt1 opt2 opt3 opt4 opt5 opt6 mio M2005

methane 48 113 79 102 50 82 37 137 51
ethyne 70 69 159 250 107 81 103 140 72
ethene 64 145 189 158 152 143 102 201 82
ethane 58 64 63 54 53 45 45 136 48
allene 36 159 229 181 185 175 110 245 89
cyclopropane 40 81 133 111 77 78 87 149 75
propene 70 150 192 138 156 140 83 219 54
1,3-butadiene 72 149 191 142 153 143 94 214 64
bicyclo[2,1,0]pentane 158 125 136 137 145 163 127 154 140
spiropentane 110 283 274 306 259 194 180 435 137
cyclohexane 117 64 63 103 72 74 95 116 103
benzene 52 161 199 144 156 127 99 230 100
1,3,5-hexatriene 88 147 189 169 152 140 122 203 89
cubane 51 112 115 188 102 135 143 352 83
MAX (total)b 158 283 274 306 259 194 180 435 140

a Calculated with the cc-pVTZ basis set. b Maximal absolute deviation of all 349 vibrational frequencies of the 14 molecules shown.

Figure 2. Errors in computed heats of formation for linear alkanes
CnH2n+2 for opt3, opt4, and the mio(PBE) parameter sets and also
including disperion corrections. The results are compared with B3LYP/
6-31G(d) results, including a dispersion correction from ref 42. The
line connecting the points is plot to facilitate the comparisons.
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for any of these sets if the atomic energies are fitted to minimize
the errors of heats of formation of these linear alkanes. With
this result, it is not too much of a surprise that for opt3, no
error accumulation is found. As discussed above, the atomic
energies of opt3 are already fitted to training set 1, which
partially accounts for the accumulation problem.

Conclusion

We have presented a new methodology which greatly
simplifies the generation of the SCC-DFTB repulsive potentials
and considerably improves the accuracy, in particular, for heats
of formation and vibrational frequencies. The method is based
on a solution of a linear inverse problem for a set of repulsive
potentials for a given group of elements. Since in most cases,
the effective linear problem is not directly invertible (being either
over- or underdetermined), a singular value decomposition
approach is used to extract the meaningful portion of information
from the effective linear problem. The application of fourth-
order splines results in smooth second derivatives, leading to
an improved description of vibrational frequencies.

In this work, the formalism of the electronic part of SCC-
DFTB has not been modified; however, we have slightly
adjusted the values of atomic electronic energies and confining
radii for atomic orbitals and densities entering the Hamilton
matrix elements to improve the overall performance. The present
work clearly shows that the approximations inherent in SCC-
DFTB limit its overall performance. Heats of formation and
vibrational frequencies cannot be simultaneously optimized to
an accuracy comparable with that of full DFT methods.
Therefore, we suggest using a special parametrization for
vibrational frequencies, when needed (sets opt5 and opt6).

The SCC-DFTB repulsive potentials have up to now been
derived for a variety of elements, including C, H, N, O, Mg, P,
S, and so forth. The repulsive potentials depend on the electronic
parameters for which they have been fitted, in particular, the
confining radii. In a first step, we have derived optimized
repulsive parameters using the confining radii of the actual
parameter set. Therefore, the sets opt1 and opt2, which show
improved properties for the repulsive potentials for C and H,
can be used in conjunction with the parameters with the other
elements parametrized so far.

On the other hand, we have optimized the confining radii as
well (opt3, opt4, opt5, opt6). These sets are no longer consistent
with the parameters of the other elements, that is, the aim of
ongoing and future work will be to also reoptimize the
parameters of other elements. The variation of electronic
parameters improves all properties, most significantly, the heats
of formation, however within a limited range. This means that
the electronic parameters cannot be used for a significant
improvement of performance, for example, within a brute force
fitting approach. On the other hand, this shows the robustness
of SCC-DFTB, that is, a variation of electronic parameters will
also not lead to significant failures, of course within the limits
of DFT-GGA. With opt3, SCC-DFTB can successfully compete
with the special parametrization PDDG-PM3 and also with
B3LYP, being much better than PBE at least for hydrocarbons.
This shows that with a suitable choice of parameter systematic
deficiencies of the underlying PBE functional can be improved.
Whether this favorable behavior will remain for other atom types
is the subject of our current investigation.

A fundamental decision in the parametrization procedure is
whether the atomic parameters (atomic electronic energies) and
repulsive potentials are optimized in one step. This is done for
the sets opt1, opt3, and opt5 and is a general strategy for the

parametrization of NDDO-type semiempirical methods. This
however, influences the repulsive potential itself, that is, the
repulsive potentials are arbitrarily shifted to optimize the
performance. This means that part of the energy of a bond,
which is described by parameters depending on two centers
(pairwise potentials), is shifted to atomic parameters; in the case
of SCC-DFTB, it is shifted to the atomic electronic energies.
So far, this seems to pose no problem as long as parameters for
all atom types are determined in one optimization step. This
means, however, that the parametrization for new atom types
will lead to an adjustment of the already parametrized ones,
which will lead to an increasing complexity of the problem when
more elements are to be included. Therefore, we consider the
approach 2, where only repulsive potentials are optimized (opt2,
opt4, opt6), to be more practical in this respect. The atomic
values can still be reoptimized after determining Erep, leading
still to a slight improvement, although the performance of
approach 1 cannot be completely matched. Ongoing work will
clarify this point in more detail.
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Appendix

Continuity Equations. In the following, we are referring to
one specific repulsive potential VXY

rep, X and Y being two different
types of atoms as mentioned for eqs 11-14. These conditions
can then be conveniently written in matrix language after
introducing a column vector a3 containing the unknown
parameters a0,i, a1,i, a2,i, and a3,i

and a column vector a4 containing the unknown parameters a4, i

and three auxiliary matrices Qi, Ri, and S given by

Then, eqs 11-14 can be expressed concisely using block
matrices T and W as

a3
T ) [a0,1a1,1a2,1a3,1...a0,na1,na2,na3,n] (29)

a4
T ) [a4,1a4,2...a4,n] (30)

Qi ) [1 (ri+1 - ri) (ri+1 - ri)
2 (ri+1 - ri)

3

0 1 2(ri+1 - ri) 3(ri+1 - ri)
2

0 0 2 6(ri+1 - ri)
0 0 0 6

]
(31)

Ri ) [(ri+1 - ri)
4

4(ri+1 - ri)
3

12(ri+1 - ri)
2

24(ri+1 - ri)
] and S ) [-1 0 0 0

0 -1 0 0
0 0 -2 0
0 0 0 -6

]
(32)
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Clearly, the matrix T, being an upper triangular matrix with
nonzero diagonal elements, is nonsingular and can be inverted,
yielding

As mentioned earlier, the previously used third-order spline does
not provide an accurate representation of the repulsive portion
of the Hessian. Equation 34 shows that using fourth-order splines
does not increase the computational complexity of the problem
in comparison to the standard third-order spline, owing to the
existence of an additional continuity condition. This reasoning
shows also that VAB

rep is completely determined if n parameters
a4,1, a4,2, ..., a4,n are specified.

The remaining unknown parameters a4,1, a4,2, ..., a4,n defining
each of the repulsive potentials are fitted to reproduce a set of
atomization energies and equilibrium structures for a chosen
group of molecules. In the next two subsections, we show how
the SCC-DFTB atomization energies and equilibrium geometries
can be represented in terms of the unknown parameters a4,1,
a4,2, ..., a4,n.

Energy Equations. To derive the working energy equation
for molecule M, eq 19 is cast in a matrix form. For the clarity
of presentation, it is convenient to assume that the molecule M
is built only of two different types of atoms, say X and Y
(similarly like C6H6 is built only of carbon and hydrogen). It is
easy to see that the discussion of a general case does not involve
any further complications but would lead to more cumbersome
notation. Then, the LHS of eq 19 depends only on three different
repulsive potentials, VXX

rep, VXY
rep, and VYY

rep, and two unknown atomic
electronic energies, EX

el and EY
el. Let us examine in detail a single

component of the LHS of eq 17, VAB
rep(rAB). We may further

assume without loss of generality that VAB
rep ) VXX

rep and that rAB

lies inside of some interval Ip, rp being the corresponding
division point. This allows for writing

which can be rewritten in a matrix form as

Here, the row vectors Z3 and Z4 are given explicitly by

and

The position of the first nonzero component of Z3 is 4p - 3.
The position of the only nonzero component of Z4 is p. Using
eq 31 allows for writing eq 33 only as a function of a4

XX as

Let us denote by a the vector of all of the unknown parameters;
it can be represented as a block vector

Then, VAB
rep(rAB) can be written as

Similarly, the sum of all atomic electronic energies can be
written in an analogous way

where nX and nY are the number of atoms X and Y, respectively, in
the molecule M and G is a shortcut for the row vector on the RHS
containing nX and nY. Substituting these equations into eq 19 yields
the final working energy equation for molecule M in a matrix form

where ZM is a shortcut for the term in parentheses. These equations
can be readily extended to account for a larger number of atom
types.

Ta3 + Wa4 ) [Q1 S 0 · · · 0
0 Q2 S · · · l
0 0 Q3

· · · 0

l l · · ·
· · · S

0 0 · · · 0 Qn

]a3 +

[R1 0 0 · · · 0
0 R2 0 · · · l
0 0 R3

· · · 0

l l · · ·
· · · 0

0 0 · · · 0 Rn

]a4 ) 0 (33)

a3 ) -T-1Wa4 (34)

VAB
rep(rAB) ) ∑

k)0

4

ak,p
XX(rAB - rp)

k (35)

VAB
rep(rAB) ) Z3a3

XX + Z4a4
XX (36)

Z3 )

[0 · · · 0 1 (rAB - rp) (rAB - rp)
2 (rAB - rp)

3 0 · · · 0 ]

(37)

Z4 ) [0 · · · 0 (rAB - rp)
4 0 · · · 0 ] (38)

VAB
rep(rAB) ) (Z4 - Z3T

-1W)a4
XX (39)

a ) [a4
XX

a4
XY

a4
YY

EX
el

EY
el

] (40)

VAB
rep(rAB) ) [(Z4 - Z3T

-1W) 0 0 0 0 ][a4
XX

a4
XY

a4
YY

EX
el

EY
el

] ) ZABa

(41)

∑
A

EA
el ) nXEX

el + nYEY
el ) [0 0 0 nX nY ][a4

XX

a4
XY

a4
YY

EX
el

EY
el

] ) Ga

(42)

ZMa ) ( ∑
A>B

ZAB - G)a ) Eat - Eel (43)
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Force Equations. To derive the force working equations, the
first task is to cast eq 21 in a matrix form. To simplify the
discussion, we again assume that the system of interest consists
only of two atom types, X and Y. As above, we choose VAB

rep )
VXX

rep and assume that rAB lies inside of the interval Ip. Then, we
can easily evaluate the derivative in eq 22 as

which can be readily rewritten in a matrix form as

Here, the row vectors P3 and P4 are given explicitly by

and

The position of the first nonzero component of P3 is 4p - 2.
The position of the only nonzero component of P4 is p. Using
eq 34 allows for writing eq 45 as a function of a4

XX only as

Using the vector a of all of the unknowns defined in eq 40
enables expression of the derivative of VAB

rep as

Substituting this equation into eq 22 and combining with eq 21
yields the final working equation for the force on atom A in a matrix
form

Note that matrix PM, A consists of three rows. Therefore, the total
number of force equations for the molecule M is 3n, where n is
the total number of atoms constituting the molecule M.

As mentioned above, it is also possible to employ nonequi-
librium structures in our fitting procedure. The only complication
is that for such a nonequilibrium structure, the total force vector
must be calculated using some quantum chemical method and

be combined with the SCC-DFTB electronic force vector to
yield the RHS of eq 50.

Additional Equations. Equation 23 can be expressed in a
matrix as

where U3 and U4 are explicitly given by

and

The position of the first nonzero component of U3 is 4p - 3.
The position of the only nonzero component of U4 is p. Using
eq 34 allows for writing eq 51 only as a function of a4 as

Now let us again assume for simplicity that our task is to
determine the repulsive potentials for molecules built only from
two different types of atoms, X and Y, and that the additional
condition concerns the repulsive potential between atoms of type
X. Using the vector a of all of the unknowns defined in eq 37
enables expression of the condition Sp

XX(rz) ) V as

As mentioned above, similar additional conditions can be
imposed not only on repulsive potentials but also on their
derivatives. The only modification required for this purpose is
using appropriate derivatives of vectors U3 and U4 in eqs 52
and 53. It is probably already obvious for a careful reader that
the previously discussed vectors P3 and P4 in eq 49 are the first
derivatives of the vectors Z3 and Z4 in eq 41.

Reaction Equations. Starting from eq 24, we construct four
energy equations for molecules M1, M2, M3, and M4 as described
in eq 43. Adding these equations with the appropriate reaction
coefficients yields a working equation for reaction energies in
the form

which is in close analogy to the equations discussed previously
for energies and forces. Note that the LHS of this equation does
not depend explicitly on the atomic electronic energies EX

el and
EY

el since they effectively cancel out upon the addition.

dVAB
rep

dr |r)rAB
) ∑

k)1

4

ak,p
XX · k · (rAB - rp)

k-1 (44)

dVAB
rep

dr |r)rAB
) P3a3

XX + P4a4
XX (45)

P3 )

[0 · · · 0 1 2 (rAB - rp) 3(rAB - rp)
2 0 · · · 0 ]

(46)

P4 ) [0 · · · 0 4(rAB - rp)
3 0 · · · 0 ] (47)

dVAB
rep

dr |r)rAB
) (P4 - P3T

-1W)a4
XX (48)

dVAB
rep

dr |r)rAB
) [(P4 - P3T

-1W) 0 0 0 0 ][a4
XX

a4
XY

a4
YY

EX
el

EY
el

] ) PABa

(49)

PM,Aa ) -( ∑
B*A

rA - rB

rAB
PAB)a ) -FA

el (50)

Sp(rz) ) V ) U3a3 + U4a4 (51)

U3 ) [0 · · · 0 1 (rz - rp) (rz - rp)
2 (rz - rp)

3 0 · · · 0 ]
(52)

U4 ) [0 · · · 0 (rz - rp)
4 0 · · · 0 ] (53)

Sp(rz) ) V ) (U4 - U3T
-1W)a4 (54)

Sp
XX(rz) ) V ) [(U4 - U3T

-1W) 0 0 0 0 ][a4
XX

a4
XY

a4
YY

EX
el

EY
el

] ) Ua

(55)

Jreaa ) (n3ZM3
+ n4ZM4

- n1ZM1
- n2ZM2

)a ) Erea -

(n3EM3

el + n4EM4

el - n1EM1

el - n2EM2

el ) ) Lrea (56)
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Solving the System of Linear Equations. The equations for
atomization energies, forces, reaction energies, and the additional
conditions have the same structural form. Therefore, it is
possible to write them as a single set of linear equations. After
introducing auxiliary matrices and vectors

and

the final system of equations can then be written as

where M and R are shortcuts for the matrix on the LHS and the
vector on the RHS, respectively. The symbols appearing in eqs
57-60 have the following meanings: m in eq 57 is the number
of atomization energies used in the fitting procedure, the indices
indicating specific molecules m and nk in eq 58 are the number
of equilibrium structures used in the fitting procedure and the
number of atoms in the kth structure, respectively, o in eq 59 is
the number of additional equations used, and s in eq 60 is the
number of reaction energies used in the fitting procedure. Note
that in eqs 50 and 58, Pi, j is a matrix consisting of three rows,
and Fi, j

el is a vector containing three entries.
The set of linear equations in eq 61 is usually either over- or

underdetermined. We have found that its solution can be found
in the most numerically stable fashion via the singular value

decomposition56 (SVD) of the matrix M. Thus, we can rewrite
eq 61 as

where U and V are orthogonal square matrices and Σ is a
diagonal rectangular matrix containing the singular values sorted
from the largest to the smallest. Assuming that all of the singular
values are different than zero, the solution a can be expressed
as

However, in most cases, some of the singular values will be
very close to zero. In these cases, to prevent numerical artifacts,
we truncate the singular values to the first t nonzero numbers.
This procedure can be considered as using the concept of a
generalized inverse to solve eq 61. Then, the solution a is given
by the same formula as that in eq 63, with V and U truncated
to their first t columns and Σ-1 being the inverse of the upper-
left t × t segment of Σ.

The solution given by eq 63 determines all of the unknown
electronic energies and the coefficients a4, k for all of the involved
spline segments. Subsequently, the remaining spline coefficients
are computed from eq 34.

Supporting Information Available: Excel file for computed
and experimental data. This material is available free of charge
via the Internet at http://pubs.acs.org.
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